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Abstract

Malaria is a longstanding public health problem in sub-Saharan Africa, while arthropod-borne 

viruses (arboviruses) like dengue and chikungunya cause an underrecognized burden of disease. 

While many human and environmental drivers affect the dynamics of vector-borne diseases, here 

we argue that the direct effects of warming temperatures are likely to promote greater 

environmental suitability for dengue and other arboviruses transmitted by Aedes aegypti while 

reducing the suitability for malaria transmitted by Anopheles gambiae. Environmentally-driven 

changes in disease dynamics will no doubt be complex and heterogeneous, but given that current 

public efforts are targeted to malaria control, we encourage the public health community to 

consider Aedes aeypgti and dengue, chikungunya, and other arboviruses as potential emerging 

public health threats in sub-Saharan Africa.
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The global health community has expressed growing concern that climate change will alter 

the distribution and burden of vector-borne diseases, potentially reversing the gains of 

control programs and expanding the threat of emerging diseases (1–4). Malaria still imposes 

a major burden of morbidity and mortality in sub-Saharan Africa (228 million cases and 

405,000 deaths in 2018), despite recent intensive control efforts that have succeeded in 

reducing transmission in many locations (5–7). At the same time, many other vector-borne 

diseases, including Rift Valley fever, dengue, chikungunya, yellow fever, Zika, 

o’nyong’nyong, West Nile, leishmaniasis, river blindness, and African sleeping sickness, 

circulate regularly in humans, wildlife, and livestock in sub-Saharan Africa, although their 

burden is less well characterized (8–12). For example, over 27,000 cases of arbovirus 

infections transmitted by Aedes vectors have been reported in West Africa since 2007 (13). 

It is now well established that temperature has nonlinear effects on vector-borne disease 

transmission, and that different mosquito and parasite species differ in this response, 

resulting in differences in their thermal optima and limits (2,4,14–19). As a result, the 

direction and magnitude of the effects of climate change on transmission of specific vector-

borne diseases will differ across geographic regions.

In this Personal View, we summarize and visualize published data to make the case that 

climate change, in conjunction with urbanization, is likely to drive a shift in most of sub-

Saharan Africa from climates most suitable for malaria transmission by rural Anopheles spp. 

mosquitoes to climates more suitable for transmission of dengue and other arboviruses by 

Aedes aegypti mosquitoes, with major consequences for public health and disease control 

strategies. Specifically, we draw from three lines of evidence: transmission models fit from 

laboratory thermal performance data; independent data on human infection; and widespread 

existing distributions of Aedes aegypti, dengue, and chikungunya in sub-Saharan Africa. 

While the drivers of vector-borne disease dynamics are multifaceted and include human 

mobility, rainfall and water storage practices, urbanization, and others, the increasing 

temperature suitability for arbovirus transmission merits attention from the global health 

community, in tandem with ongoing efforts toward malaria control. Therefore, although we 

cannot conclusively predict changes in disease incidence based on temperature alone, we 

argue that the effects of temperature change will promote arbovirus transmission and 

increasingly limit malaria transmission by rural vector species in much of sub-Saharan 

Africa, acting in concert with urbanization and other changes.

Transmission models

Climate change will affect vector-borne disease transmission because temperature affects 

vector population size, survival, biting, pathogen incubation rates, and vector competence, 

with potential additional effects via rainfall and humidity (15–17,20). The physiological 

effects of temperature on the vector and pathogen traits that drive transmission are well-

established from laboratory experiments and field studies (20–24). Both ectotherm 

physiology theory and data from a wide variety of ectotherm taxa and traits demonstrate that 

the thermal responses of development, survival, and reproduction are often unimodal, 

peaking at intermediate temperatures and declining at both low and high temperatures (25–

27). Laboratory experiments confirm that these nonlinear thermal responses are pervasive 

across mosquito and pathogen taxa and traits (15–17,21,28–30). We previously developed 
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temperature-dependent R0 models that incorporate empirically measured effects of 

temperature on mosquito biting rate, immature survival probability, immature development 

rate, adult lifespan, fecundity, vector competence (probability of becoming infectious 

following exposure to an infectious blood meal), and parasite development rate, and in turn 

on mosquito population size, for malaria transmitted by Anopheles gambiae (and, where 

data were not available, from traits derived from other Anopheles spp.) (15,31) and for 

dengue, chikungunya, and Zika transmitted by Aedes aegypti (16,17). Because the Ae. 
aegypti temperature-dependent R0 relationships were very similar for all three viruses 

(16,17), we hereafter focus on results from the dengue model. For both malaria and 

arboviruses, vector and parasite traits and R0 peak at intermediate temperatures and are 

suppressed at both low and high temperatures (2,15–18,28). The thermal optima and ranges 

for transmission vary by vector and parasite species: malaria transmission by Anopheles 
gambiae peaks at 25°C, while arbovirus transmission by Aedes aegypti peaks at 29°C (15–

17,31) (Fig. 1: lines). Multiple vector and parasite traits contribute to differences in the 

thermal response of transmission across species (32).

Independent data on human infection indicate potential for shifts in disease 

burden

Field data from both mosquito-based metrics of transmission risk (e.g., entomological 

inoculation rate) (15,37) and in human incidence and at local and continental scales (16,36) 

strongly support nonlinear effects of temperature on transmission predicted from laboratory 

studies and mathematical models. Recent work from our cohort study of febrile children in 

four villages in Kenya showed a unimodal relationship between blood smear positivity for 

malaria and temperature, with a peak at 25°C (30-day average temperature, lagged by one 

month: the time scale at which we expect temperature to affect transmission) and a sharp 

decline in smear positivity above the optimum temperature (Fig. 1; filled circles) (36). This 

result strongly supports the independently predicted 25°C optimum from the temperature-

dependent malaria R0 model (Fig. 1; solid line) (15). In the same study, non-malarial fever, 

much of which is caused by dengue and chikungunya, increased with temperature 

throughout the observed temperature range, supporting the relatively warm thermal optimum 

of dengue (Fig. 1; dashed line and open triangles). As further evidence for the physiological 

constraints on malaria and arbovirus transmission, previous studies supported the thermal 

optima predicted from mechanistic models. First, a study of dengue in 20 cities in Colombia 

showed a unimodal relationship between incidence and weekly average temperature 

(multiple time windows and lags were explored) that peaked at a mean temperature of 28°C 

(38), supporting the model-predicted optimum for dengue transmission of 29°C (16). 

Second, the predicted unimodal effects of temperature on transmission, peaking at 25°C for 

malaria and 29°C for dengue, chikungunya, and Zika viruses (also transmitted by Aedes 
aegypti), are supported by continental-scale data on entomological inoculation rate in Africa 

and human incidence in the Americas, respectively (15–17).
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Shifting climate suitability for malaria and Aedes aegypti-transmitted 

viruses

As climate change leads to warming temperatures, the intermediate thermal optima for 

vector transmission have two immediate implications. First, for all vector-borne diseases, 

climate change will drive increases in some regions and decreases in others, depending on 

current and future local climates relative to the optimum and thermal limits for disease 

transmission. Second, the relative suitability for different vector-borne diseases will shift: 

the climate may simultaneously become more suitable for some diseases and less suitable 

for others. In regions where temperatures are regularly between 25–29°C, including much of 

sub-Saharan Africa, a warming climate will become less suitable for malaria but more 

suitable for dengue, chikungunya, and other arboviruses transmitted by Ae. aegypti (Fig. 2). 

Specifically, the highest density of people exposed to high temperature suitability for 

transmission (the ‘risk hotspot’) for malaria is projected to shift toward higher elevations 

such as the Albertine Rift region and higher latitudes in Southern Africa (Fig. 2A–C, red 

circles). Meanwhile, the risk hotspot for dengue, chikungunya, and other Aedes aegypti-
transmitted arboviruses is predicted to expand from West Africa throughout sub-Saharan 

Africa (Fig. 2D–F).

In conjunction with climate change, urbanization is driving widespread changes in habitat, 

microclimate, and human populations and is occurring more rapidly in sub-Saharan Africa 

than anywhere else in the world (though these transitions can be complex and diverse) 

(40,41). Urbanization affects vector-borne disease transmission by altering the availability of 

vector breeding habitat and contact with humans. Aedes aegypti mosquitoes breed in 

human-made container habitats such as discarded tires, cans, buckets, and water storage 

containers, all of which increase in density in urban areas but are also present in villages 

(10,42,43). By contrast, Anopheles gambiae and some other African malaria vectors breed in 

naturally occurring pools of water, which are more common in rural areas, although malaria 

transmission can also occur in cities (44,45). In addition to affecting breeding habitat, urban 

areas form ‘heat islands’ with microclimates that are several degrees warmer than 

surrounding vegetated areas, which can directly influence vector development and survival 

(46) and may benefit warmer-adapted Aedes aegypti over Anopheles gambiae mosquitoes. 

Urbanization may therefore act synergistically with warming climate to promote the shift 

from Anopheles-transmitted malaria to Aedes-transmitted arboviruses in sub-Saharan 

Africa.

Widespread distribution of Aedes aegypti and arboviruses in sub-Saharan 

Africa

Although shifts in climate suitability do not necessarily translate into a shift in disease 

burden from malaria to dengue and other arboviruses in sub-Saharan Africa, mounting 

evidence supports this hypothesis. First, for expansions in transmission to occur, Aedes 
aegypti mosquitoes and arboviruses must be present in the region. Growing evidence 

suggests that the vectors and arboviruses are already widespread and under-recognized in 

sub-Saharan Africa, in part because of misdiagnosis and a public health focus on malaria 
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and Anopheles vectors (Table 1) (10,13,33–35,42,47–53). For example, recent arbovirus 

surveillance work in Kenya in regions of high malaria endemicity (Fig. 1) showed that ~10–

20% of febrile children were positive for dengue virus infection for much of the year (Fig. 

3A), and that Aedes aegypti mosquito vectors were abundant in and around households year-

round (Fig. 3B; see Supplementary Materials, page 3, for Methods). These data suggest 

ongoing endemic transmission of dengue in at least four geographically distinct Kenyan 

populations. Recently, large chikungunya epidemics have also occurred in Mombasa, 

Mandera, and Lamu, Kenya (54–56) and in the Kassala state of Sudan, where heavy rains 

flooded a major river, sparking an outbreak (57). Growing evidence suggests that both 

endemic and epidemic transmission of dengue, chikungunya, and other Aedes-transmitted 

arboviruses regularly occurs in sub-Saharan Africa, though it may be undiagnosed or 

misdiagnosed as malaria (Table 1) (13,33,58–61). At the same time that the arbovirus threat 

is increasingly recognized in sub-Saharan Africa, malaria has declined dramatically in the 

last two decades (5–7). While the drivers of this decline are undoubtedly complex, and much 

has been attributed to the success of malaria control programs, it is also possible that some 

of the decline results from decreasing climate suitability due to increasing temperature. The 

extent to which warming temperatures have already reduced malaria transmission remains to 

be assessed because few have recognized that the optimum for malaria transmission is as 

low as 25°C (62).

Discussion

The degree to which changes in climate suitability for transmission translate into changes in 

the landscape of disease depends on other factors that shape disease dynamics, including 

pathogen exposure history, housing type, vector control and public health efforts, rainfall, 

and human mobility (70–73). Exposure history is particularly important because newly 

occurring transmission in naïve populations may more sharply increase the burden of disease 

than increases in already endemic populations with some acquired immunity (74,75). 

Therefore, even if climate change leads to geographic shifts rather than net increases in 

populations at risk of disease (Fig. 2), these shifts are not neutral from a public health 

perspective, and may be disruptive to populations, healthcare systems, and economies that 

have not historically experienced either malaria or arboviral diseases. Within endemic 

regions, the interannual variability and seasonality of transmission could further change in 

response to changing rainy seasons and their interaction with temperature (72,76,77). At the 

same time, changes in demography, population growth, migration, and socioeconomic 

conditions may mitigate the impacts of climate change on vector-borne disease dynamics 

(70,78,79). However, climate places limits on where transmission can and cannot occur 

regardless of population characteristics and may exacerbate effects of changing social 

vulnerability to disease.

Mosquitoes and parasites are not static threats but evolving organisms that respond to 

ecological conditions and selective pressures imposed by their changing environments. The 

potential for mosquitoes to adapt to warming temperatures by increasing their thermal 

optima and limits remains unknown (80). Mosquitoes quickly and repeatedly evolve 

resistance to insecticides when vector control programs impose strong selective pressure 

(81). However, temperature-driven selection on mosquitoes may not align with selection on 
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the parasites they transmit. At warm temperatures, mosquito longevity is the major 

limitation on transmission because short pathogen incubation periods and frequent biting 

cannot overcome declining mosquito lifespans to sustain transmission (4,15,31). But even 

short-lived mosquitoes may achieve high fitness at warm temperatures if rapid development 

and high fecundity outweigh the cost of shorter lifespans. As a result, selection may not lead 

to increased mosquito survival at high temperatures, and therefore evolution may not rescue 

vector transmission as temperatures exceed current thermal optima.

Even if temperatures become warm enough to drive existing populations extinct or to 

suppress their ability to transmit disease, warmer-adapted mosquitoes (including Aedes 
aegypti and Anopheles stephensi, an urban malaria vector in India (82)) could invade and 

replace current An. gambiae populations transmitting malaria in Africa. Incipient speciation 

has already occurred in Africa in Ae. aegypti subtypes (83,84) and in the An. gambiae 
species complex (85–88), suggesting that both can adapt to changing ecological conditions 

including urbanization and, potentially, climate. Aedes albopictus, another arbovirus vector, 

is also present in some regions of Africa, and where it co-occurs with Ae. aegypti it can be 

competitively dominant (65–67). Temperature-dependent R0 models suggest that Ae. 
albopictus has a cooler thermal optimum (26°C) and upper thermal limit (32°C) than Ae. 
aegypti, which could limit the expansion and transmission potential of this species under 

warming climates (16,89). Climate-driven ecological and evolutionary changes in mosquito 

communities that might alter the direct physiological effects of temperature are therefore 

highly uncertain.

Although many aspects of the changing environmental and population landscapes that shape 

disease transmission remain unknown, we have outlined three lines of evidence suggesting 

that climate change, in concert with urbanization, will drive a shift in disease transmission in 

sub-Saharan Africa from malaria to arboviruses like dengue and chikungunya in the next 

few decades (Fig. 2). First, temperature-dependent transmission models predict increased 

suitability for Aedes-transmitted arboviruses and decreased suitability for malaria (Fig. 1) 

(15,16). Second, large-scale entomological and human disease data and local human 

incidence data provide evidence that warming temperatures above thermal optima drive 

declines in transmission (Fig. 1) (15,16). Third, at the same time that malaria is declining in 

much of sub-Saharan Africa, arboviruses and Aedes aegypti already pose an 

underrecognized public health burden, which could expand under increased climate 

suitability (Figs. 2–3; Table 1).

Malaria has already declined precipitously in much of Central and South America and the 

Caribbean in the last three decades at the same time that dengue, chikungunya, and Zika 

have exploded to cause half a million to >2 million cases per year (www.paho.org) (90–92). 

The drivers of these disease trends are almost certainly complex and multivariate, including 

multiple aspects of environmental and human population change. Nonetheless, the 

correspondence between shifting temperature suitability predicted from laboratory data and 

models and the observed shifts from malaria to dengue and other arboviruses is striking. For 

example, in a country-scale analysis of arbovirus transmission in Latin America and the 

Caribbean from 2014–2016, weekly mean temperatures averaged 25.6°C across the region 

(range in weekly average temperature from 21.5 – 28.7°C across countries),(16) spanning 
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the range where malaria transmission peaks and begins to decline while arbovirus 

transmission increases steeply with temperature (Fig. 1).

Disease control strategies that are effective against malaria—such as long-lasting 

insecticide-treated bednets, indoor residual spraying, and artemisinin combination therapy—

are ineffective against dengue, which uses the day-biting and container-breeding Aedes 
aegypti mosquito as its primary vector (93,94) and currently has no specific drug therapy or 

broadly effective vaccine available (the development and roll-out of the Sanofi-Pasteur 

dengue vaccine has had mixed results (95,96)). A shift from malaria to dengue in sub-

Saharan Africa would therefore require public health efforts to retool to control an 

ecologically different vector and pathogen, a shift that has already taken place throughout 

much of the Americas. In particular, the development of accurate point-of-care diagnostics 

for dengue and chikungunya viruses and community-based vector control will be 

increasingly important for targeted care and prevention of arboviruses (13,34,35,53). While 

malaria eradication efforts remain critical, given the year-round circulation of dengue and 

chikungunya and abundance of Aedes spp. mosquitoes in Africa, public health efforts should 

also prepare for a potentially growing threat of arboviral disease in Africa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Search strategy and selection criteria

This Personal View primarily summarizes evidence from our own work and that of 

collaborators. The references in Table 1 were selected based on our own reading of the 

peer-reviewed literature in English, suggestions from two anonymous reviewers, and 

Google Scholar searches of “arbovirus,” “dengue,” “chikungunya,” “Aedes aegypti,” or 

“Aedes albopictus,” and “Africa” performed in May 2020. They were chosen based on 

providing some evidence of arbovirus or vector presence in Africa, and are not an 

exhaustive list.
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Key Messages

• Malaria transmission by Anopheles gambiae peaks at 25°C while dengue 
transmission by Aedes aegypti peaks at 29°C, based on mechanistic 

transmission models parameterized and validated with laboratory and field 

data. Warming temperatures in the tropics are expected to favor transmission 

of dengue over malaria.

• Independent data on human infections of malaria and dengue support 
the predicted nonlinear effect of temperature on disease incidence. In 

tropical regions, where temperatures regularly hover around 25°C, warmer 

temperatures correspond to a decrease in malaria incidence and an increase 

dengue and chikungunya incidence.

• Dengue, chikungunya, and their Aedes aegypti mosquito vector are 
already widespread but under-recognized in Africa, based on studies of 

vector abundance, human serology, and acute infections from across Africa. 

As climate suitability increases for arboviruses, these diseases could expand 

and overtake the public health burden of malaria.

• While malaria control efforts remain critical, arbovirus control through 
increased surveillance and testing capacity and vector control of 
container-breeding, day-biting Aedes aegypti is a critical emerging public 
health need in Africa. Testing and diagnostic capacity for arboviruses, as 

well as awareness of vector ecology and exposure risk, lag well behind that of 

malaria in most of sub-Saharan Africa, where climate change is expected to 

promote dengue and other arboviruses.
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Figure 1. Malarial and non-malarial fever among Kenyan children from 2014–2018 versus 
temperature, overlaid on basic reproduction number curves for malaria and dengue.
Points represent proportion of children with positive malaria smears (filled circles) and 

proportion of children with non-malarial fever (open triangles) over temperature. Land 

surface temperatures at each participant visit were calculated as 30-day mean temperatures 

lagged by one month (the time window in which we expect temperature to affect 

transmission), specific to each of the four clinic sites. Proportions were calculated at 1°C 

intervals of temperature (x-axis) at each of the four different outpatient clinic sites in 

western and coastal Kenya where children with undifferentiated fever were recruited, for up 

to four points per temperature bin (12,33–36). Lines represent predicted basic reproduction 

number (R0, rescaled to range from zero to one) for malaria (solid line) and dengue (dashed 

line) as a function of temperature from ecological models based on laboratory mosquito and 

parasite data (15–17). For methods detail, see Supplementary Materials, pages 2–3.
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Figure 2. 
Temperature-driven malaria risk hotspot (red circles; top row [A-C]) shifts to high 
elevations in East Africa while Aedes aegypti-transmitted arbovirus risk hotspot (red 
circles; bottom row [D-F]) expands throughout sub-Saharan Africa from current (left 

column [A, D]) to 2050 (middle column [B, E]) to 2080 (right column [C, F]). Color scale 

indicates the number of months per year predicted to have highly suitable (relative R0 > 0.5) 

temperatures for transmission, multiplied by population density (log(1 + population 

density)), for a scaled index of person-months of high risk for transmission. Temperature 

suitability for transmission is based on the upper 50th percentile of relative R0 from 

temperature-dependent R0 models (15,16). All climate projections are based on the business 

as usual climate scenario RCP 8.5, using the HadGEM2-ES General Circulation Model. The 

red circles indicating hotspots are shown to ease visualization of the areas of highest person-

months of risk. An aridity mask (gray) blocks out regions that are too dry for malaria 

transmission (39). This figure is intended to illustrate one possible scenario of temperature-

driven risk, rather than making a specific prediction about future disease burden, which 

additionally depends on moisture availability, human population growth and mobility, and 

other factors. For Methods details, see Supplementary Materials, pages 4–8.
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Figure 3. High rates of dengue virus infection in febrile children (A) and consistently high 
abundance of Aedes aegypti mosquitoes (B) in four villages in Kenya suggests that arboviruses 
are an underrecognized public health burden.
The rates of dengue positivity (A) are measured as the percentage of children <18 years of 

age with undifferentiated febrile illness attending outpatient care who tested positive by PCR 

or IgG ELISA for dengue virus infection (69). Data were compiled from four different 

clinics in western and coastal Kenya during each calendar month between 2014 and 2018. 

Aedes aegypti abundance (B) was measured as the monthly average number of Aedes 
aegypti eggs per household recovered from ovitraps placed in and around houses. Error bars 

indicate standard errors of the mean. For Methods, see Supplementary Materials, page 3.
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Table 1.

Evidence for Aedes aegypti vectors, arbovirus transmission, and over-diagnosis of malaria across sub-Saharan 

Africa.

Location Evidence Reference

Kenya (western) Dengue infection in children (33)

Kenya (coastal) Dengue and West Nile virus transmission in children and adults (63)

Kenya Acute flavivirus and alphavirus infection in children (35)

Kenya Serological evidence of arboviral infection in children (51)

Kenya (coastal) O’nyong Nyong virus and chikungunya virus transmission (52)

Kenya (western) O’nyong Nyong virus and chikungunya virus transmission (64)

Kenya Chikungunya infection in febrile children (53)

Kenya (Mombasa) Chikungunya outbreak (54)

Kenya Aedes aegypti breeding sites in rural and urban, coastal and western locations (43)

Tanzania Severe febrile illness and overdiagnosis of malaria (49)

Tanzania Rift Valley Fever and alphavirus seroepidemiology (12)

Uganda (rural) Febrile patients and overdiagnosis of malaria (48)

Uganda (Zika Forest) Arbovirus serology in endemic population (61)

East African Community Region Arbovirus infection (11)

Cameroon Flavivirus seroepidemiology (12)

Cameroon Aedes aegypti and Ae. albopictus present (65)

Cameroon Aedes aegypti and Ae. albopictus present (66)

Central African Republic Aedes aegypti and Ae. albopictus present (67)

Mozambique Dengue, chikungunya, Rift Valley fever, West Nile, and Zika virus seroepidemiology (12)

Cote d’Ivoire (southeast) Aedes mosquitoes present in an arbovirus-endemic setting (42)

Sierra Leone Rift Valley Fever virus, flaviviruses, and alphaviruses (68)

West Africa Expansion of DENV-3 (60)

West Africa Dengue, chikungunya, and Zika outbreaks and Aedes aegypti and Ae. albopictus presence (13)

Africa Dengue virus infection (59)

Africa Overdiagnosis and co-morbidity of severe malaria (50)
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